Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1102146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875839

RESUMO

Natural polysaccharides (NPs) possess numerous health-promoting effects, such as liver protection, kidney protection, lung protection, neuroprotection, cardioprotection, gastrointestinal protection, anti-oxidation, anti-diabetic, and anti-aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway is an important endogenous antioxidant pathway, which plays crucial roles in maintaining human health as its protection against oxidative stress. Accumulating evidence suggested that Nrf2 antioxidant pathway might be one of key regulatory targets for the health-promoting effects of NPs. However, the information concerning regulation of NPs on Nrf2 antioxidant pathway is scattered, and NPs show different regulatory behaviors in their different health-promoting processes. Therefore, in this article, structural features of NPs having regulation on Nrf2 antioxidant pathway are overviewed. Moreover, regulatory effects of NPs on this pathway for health-promoting effects are summarized. Furthermore, structure-activity relationship of NPs for health-promoting effects by regulating the pathway is preliminarily discussed. Otherwise, the prospects on future work for regulation of NPs on this pathway are proposed. This review is beneficial to well-understanding of underlying mechanisms for health-promoting effects of NPs from the view angle of Nrf2 antioxidant pathway, and provides a theoretical basis for the development and utilization of NPs in promoting human health.

2.
Int J Biol Macromol ; 232: 123390, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36706878

RESUMO

Gastric cancer (GC) is being a serious threat to human health. Seeking safer and more effective ingredients for anti-GC is of significance. Increasing natural polysaccharides (NPs) have been demonstrated to possess anti-GC activity. However, the information on anti-GC NPs is scattered. For well-understanding the potential of NPs as anti-GC substances, the recent developments on structure, bioactivity and mechanism of anti-GC NPs were comprehensively reviewed in this article. Meanwhile, the structure-activity relationship was discussed. Recent studies indicated that anti-GC NPs could be mainly divided into glucan and heteropolysaccharide, whose structures affected by sources and protocols of extraction and purification. NPs exhibited anti-GC activities in cell and animal experiments as well as clinical trials, and the mechanisms might be anti-proliferation, inducing apoptosis, anti-metastasis and anti-invasion, inducing autophagy, boosting immunity, anti-angiogenesis, reducing drug resistance, anti-angiogenesis, improving antioxidant level and changing metabolites. Moreover, structural features included molecular weight, functional groups, uronic acid and monosaccharide composition, glycosidic linkage type, and degree of branching and conformation might influence the activities. Otherwise, modifications could enhance the anti-GC activity of NPs, and anti-GC NPs could be combinedly used with chemotherapeutic drugs. This review supports the applications of NPs in anti-GC and provides theoretical basis for future study.


Assuntos
Polissacarídeos , Neoplasias Gástricas , Animais , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Glucanos , Antioxidantes/química , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Relação Estrutura-Atividade
3.
Front Nutr ; 9: 1022794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267901

RESUMO

Lotus (Nelumbo nucifera Gaertn.) is a well-known food and medicinal plant. Lotus seedpod (Receptaculum Nelumbinis) is the by-products during lotus products processing, which is considered as waste. Numerous studies have been conducted on its phytochemicals, biological activity and industrial application. However, the information on lotus seedpod is scattered and has been rarely summarized. In this review, summaries on preparation and identification of phytochemicals, the biological activities of extracts and phytochemicals, and applications of raw material, extracts and phytochemicals for lotus seedpod were made. Meanwhile, the future study trend was proposed. Recent evidence indicated that lotus seedpods extracts, obtained by non-organic and organic solvents, possessed several activities, which were influenced by extraction solvents and methods. Lotus seedpods were rich in phytochemicals categorized as different chemical groups, such as proanthocyanidins, oligomeric procyanidins, flavonoids, alkaloids, terpenoids, etc. These phytochemicals exhibited various bioactivities, including ameliorating cognitive impairment, antioxidation, antibacterial, anti-glycative, neuroprotection, anti-tyrosinase and other activities. Raw material, extracts and phytochemicals of lotus seedpods could be utilized as sources for biochar and biomass material, in food industry and as dye. This review gives well-understanding on lotus seedpod, and provides theoretical basis for its future research and application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...